The need to more precisely define aspects of skeletal muscle regeneration.
نویسنده
چکیده
A more precise definition of the term 'skeletal muscle regeneration' is required to reduce confusion and misconceptions. In this paper the term is used only for events that follow myofibre necrosis, to result in myogenesis and new muscle formation: other key events include early inflammation and revascularisation, and later fibrosis and re-innervation. The term 'muscle regeneration' is sometimes used casually for situations that do not involve myonecrosis; such as restoration of muscle mass by hypertrophy after atrophy, and other forms of damage to muscle tissue components. These situations are excluded from the definition in this paper which is focussed on mammalian muscles with the long-term aim of clinical translation to enhance new muscle formation after acute or chronic injury or during surgery to replace whole muscles. The paper briefly outlines the cellular events involved in myogenesis during development and post-natal muscle growth, discusses the role of satellite cells in mature normal muscles, and the likely incidence of myofibre necrosis/regeneration in healthy ageing mammals (even when subjected to exercise). The importance of the various components of regeneration is outlined to emphasise that problems in each of these aspects can influence overall new muscle formation; thus care is needed for correct interpretation of altered kinetics. Various markers used to identify regenerating myofibres are critically discussed and, since these can all occur in other conditions, caution is required for accurate interpretation of these cellular events. Finally, clinical situations are outlined where there is a need to enhance skeletal muscle regeneration: these include acute and chronic injuries or transplantation with bioengineering to form new muscles, therapeutic approaches to muscular dystrophies, and comment on proposed stem cell therapies to reduce age-related loss of muscle mass and function. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.
منابع مشابه
Evaluation of Canonical Correlations between Masticatory Muscle Orientation and Craniodentofacial Morphology in 10-17 Year_Olds
Objectives: Different theories have been suggested to define factors involved in skeletal and craniofacial morphology. Many of these theories explain that the bone morphology is the result of the bone tissue capability to adapt in response to biomechanical forces exerted during growth. Also, it seems logical to hypothesize that there is a relationship between biomechanical connections of muscle...
متن کاملEstablishing a new animal model for muscle regeneration studies
Skeletal muscle injuries are one of the most common problems in the worldwide which impose a substantial financial burden to the health care system. Accordingly, it widely accepted that muscle regeneration is a promising approach that can be used to treat muscle injury patients. However, the underlying mechanisms of muscle regeneration have yet to be elucidated. The muscle structure and muscle...
متن کاملApplications of Small Molecules in Muscle Tissue Engineering
Introduction: Skeletal muscles account for about 40% of the total body weight. Every year, hundreds of people lose at least part of their muscle tissue due to illness, war, and accidents. This can lead to disruption of activities such as breathing, movement, and social life. To this end, various therapeutic strategies such as medication therapy, cell therapy and tissue transplantation have been...
متن کاملPlanarian Body-Wall Muscle: Regeneration and Function beyond a Simple Skeletal Support
The body-wall musculature of adult planarians consists of intricately organized muscle fibers, which after amputation are regenerated rapidly and with great precision through the proliferation and differentiation of pluripotent stem cells. These traits make the planarian body-wall musculature a potentially useful model for the study of cell proliferation, differentiation, and pattern formation....
متن کاملA new reduced mathematical model to simulate the action potential in end plate of skeletal muscle fibers
Usually mathematicians use Hodgkin-Huxley model or FitzHug-Nagumo model to simulate action potentials of skeletal muscle fibers. These models are electrically excitable, but skeletal muscle fibers are stimulated chemically. To investigate skeletal muscle fibers we use a model with six ordinary differential equations. This dynamical system is sensitive to initial value of some variables so it is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The international journal of biochemistry & cell biology
دوره 56 شماره
صفحات -
تاریخ انتشار 2014